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The targets are set: 189 nations committed themselves to keep the global temperature rise this cen-
tury well below two degrees Celsius in comparison to pre-industrial levels [1]. The European Union is 
even more ambitious, it aims to be climate neutral in 2050 [2]. Global air traffic contributes to cli-
mate change with almost one billion tons of CO2 emissions per year [3]. Currently, this is just two 
percent of mankind’s total carbon footprint, but unlike emissions in almost all other domains, it has 
not been decreasing anywhere on the world (until recently). Although, it clearly has to to achieve the 
common targets. 

It is not the case that passenger airplanes do not become more fuel efficient; in fact, each new gen-
eration every circa 25 years consumes about 20 to 25% less fuel [4]. However, the growth of air trav-
el has been outpacing these improvements and the corresponding CO2 reductions, compromising 
climate sustainability. In consequence, either technological progress must accelerate, or global air 
traffic must drastically and permanently reduce. The latter seems to be almost impossible since 80% 
of the CO2 emissions originate from 
flights over distances larger than 
1500 km for which ground transporta-
tion is usually not a feasible alternative 
[3]. Furthermore, it is difficult to reject 
the desire of citizens of emerging coun-
tries for air travel comparable to the extent which the western world is used to for decades. To con-
clude, we must find technological solutions that will ultimately lead us to carbon neutral flights. For 
this, engineers – including me – dream of revolutionising commercial aviation with hybrid-electric or 
even fully electric aircraft. Additionally, chemists are working hard on climate-neutral biofuels. How-
ever, revolutions have always been a challenge for the aerospace industry due to the unmatched 
high safety requirements, the high investment costs, and the deep supply chains. In this case, the 
immaturity of the technologies adds to these challenges. E.g., only small prototypes of electric air-
craft have been realised by now [5, 6] and current biofuels are three to four times as expensive as 
traditional aviation fuels and need deep supply chains, many resources, and large production sites all 
of which will require a long time and effort to establish. In conclusion, it will take decades until both 
technologies will enter the mass market, but we cannot wait that long; we must significantly reduce 
aviation’s carbon footprint already until the mid of the century. With average airplane service times 
of 25 to 30 years, we must act now, and we must act fast. I.e., we must think about an evolution ra-

“Climate change is the greatest challenge of our 
generation.” – Airbus [39] 
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ther than a revolution of our current designs, too. This evolution must be achieved with short devel-
opment cycles and must allow for easy and commercially viable integration into existing aircraft de-
signs. This is especially important due to the financial pressure on the aviation industry in the current 
times reducing the scope of major investments into innovations. But how can we significantly im-
prove existing designs, although, thousands of experienced engineers have already spent years opti-
mising them? Is that even possible? The answer is most likely yes. Airplanes are some of the most 
complex pieces of engineering that have ever existed. Certainly, the whole plane but also many com-
ponents have many more design dimensions than even a team of experts can exhaustively explore in 
years. So, most likely many possibilities for improvements are hidden in this vast design space. But 
how to find them? Maybe with the help of artificial intelligence (AI)!? This set of technologies has 

shown quick and disruptive changes in many 
other domains, especially since deep learn-
ing is emerging in recent years. It stands out 
due to its ability to scale, i.e., to cope with 
huge amounts of data and to perform mil-
lions of iterations within seconds in the 
cloud. Two points that are impossible for 

humans. Another special feature is that AI can address many different engineering problems with 
similar approaches, i.e., it is a general purpose technology [7]. 

In my essay, I am going to approach the question if and how AI can help to design greener aircraft. 
For this, I am not primarily going to address a specific aspect of aircraft design and how it can be im-
proved with the help of AI. Instead – and this has not been done before to the best of my knowledge 
– I am going to consider different AI technologies, briefly describe their core working principles, how 
they can be used for aircraft design, visit existing application examples, and estimate their future 
potential. Namely, this essay covers generative design using genetic algorithms, surrogate neural 
networks to replace physics-based models, and reinforcement learning. The whole analysis will focus 
on the grand challenge how to make future aircraft greener, i.e., how to accelerate the decarbonisa-
tion of air traffic such that the aviation industry is able to meet the set climate targets. 

Genetic Algorithms for Generative Design 
Generative design has been first used in architecture and styling [8]. Case studies have demonstrated 
that this type of AI can support or even take over creative design tasks that were typically carried out 
by humans. However, creative design is not only done by architects and artists. Engineering often 
requires creativity, too, especially in early stages of product design and development when engineers 
quickly draft solutions guided by their intuition without evaluating all possibilities in detail [9]. Com-
puter-aided optimisation, such as topology optimisation, is – if at all – usually only employed in later 
stages to refine the initial designs [8]. Although, this procedure has been proven to be efficient and 
successful by generations of engineers, it does not guarantee the optimality of the final solution. 
Especially, if the design space is large, it is impossible to exhaustively explore it manually and we 
must rely on the engineer’s intuition. 

Generative design aims to assist engineers in the creative conceptual stage by allowing them to ex-
plore a much larger range of possibilities [9]. Unfortunately, the concept suffers from a lack of clear 
definition; different researchers and companies label different concepts as generative design. This 

“We’ve made substantial progress, but there’s 
more work to do.” – Environment report, The 
Boeing Company [38] 
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essay focusses on generative design 
with genetic algorithms, whose 
main idea is to mimic nature’s evo-
lutionary approach to design 
through genetic variation and selec-
tion. 

How it works 
In principle, a genetic algorithm is 
just a specialised solver for a math-
ematical optimisation problem. 
Such a problem is defined by con-
straints, which limit the solution domain, and an objective function, which is sometimes called the 
fitness function [10]. A genetic algorithm starts with an initial population of candidate solutions, 
which can be randomly generated within the constraints. Next, two stages alternate, selection and 
genetic variation [11, 12]. In the selection phase, certain designs in the existing population are cho-
sen to breed a new generation. For this, the fitness function evaluates every candidate. Configura-
tions that score higher are more likely to be selected for breeding. The algorithm generates a novel 
generation by combining the selected designs using two genetic operators, crossover and mutation. 
On the one hand, crossover merges two high-scoring configurations. On the other hand, mutation 
introduces some random changes to guarantee variability. An alternation of these two steps statisti-
cally leads to a set of configurations with high – if done correctly nearly optimal – fitness. 

The main advantage of genetic algorithms is their ability to cycle through millions of complex config-
urations within seconds, a fact that has become reality only in recent years with the availability of 
large amounts of affordable and readily available compute power in the cloud [13, 14]. Additive 
manufacturing – another emerging technology that has entered the commercial aviation market 
during the past 15 years, – especially 3D printing, can produce parts of almost any geometry. Fur-
thermore, it allows mixing of materials with different properties in different zones of the same part. 
For both reasons, it dramatically increases the design space, which cannot be exhaustively explored 
by human designers and engineers anymore. Therefore, additive manufacturing is an ideal domain to 
apply the power of genetic algorithms to overcome this limitation [14]. 

The first step – defining the optimisation problem – is still carried out by humans [15]. The con-
straints of the problem can capture mechanical and geometrical requirements as well as properties 
of the material and the manufacturing process and their costs and the objective function can target 
minimum weight [8, 9]. An airplane’s CO2 emissions are approximately proportional to its weight. The 
population of initial configurations is, e.g., a set of randomly generated CAD models of part designs 
that lie inside the constraints [9]. The fitness function selects the designs with minimum weight, and 
they are merged with each other using the genetic operators to obtain an improved generation. The 
two steps alternate until, ultimately, they output a set of similar light-weight designs that are ready 
for production. 

Example 
Airbus is already using genetic algorithms for interior design since 2016 [14]. Together with Auto-
desk, a team of engineers rethought the design of a partition that separates the passenger compart-

Genetic algorithms select the best designs out of a population and combine 
them to generate an improved generation. 
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ment from the galley in the A320 
cabin. At first, they defined require-
ments, i.e., constraints for the opti-
misation, including mechanical prop-
erties such as resistance to stress and 
geometrical properties such as an-
chor points, thickness, and cut-outs. 
This allows for a relatively simple 
replacement of the existing part 
without the need for modifications of 
other aircraft components and simpli-
fies part certification, too. Further-
more, they defined the material, a 
metal alloy developed by Airbus, and 
the manufacturing method, 3D print-
ing, which impose additional constraints. Subsequently, they applied generative design to automati-
cally find the solution in this design space that minimises the weight. The resulting part is as strong 
but 45% lighter than its predecessor. If rolled out in all A320s, just this one part could save 
500,000 tons of CO2 per year. In addition, the process uses only 5% of the raw material that the tradi-
tional process of milling parts down from a metal block uses, which helps to reduce the company’s 
environmental impact, too. 

The peculiarity of Airbus’ re-designed part is its extremely complex and organic looking structure, 
which optimally addresses the given problem. Furthermore, it is the largest aircraft component that 
has ever been 3D printed – a single piece without fasteners. This design would have almost certainly 

never been found by a human engineer in 
a reasonable amount of time; just drawing 
this single configuration using CAD would 
have consumed days. This underlines the 
advantages of generative design, which 
can generate and evaluate millions of 
designs within seconds and with little 
resources [15, 13]. 

Outlook 
A weight reduction of almost half sounds game changing; just imagine the fuel savings resulting from 
an airplane that is overall 50% lighter. However, most likely, Airbus picked a part for their first gener-
ative design project that was expected to allow large material savings. So, 50% must be expected to 
be an upper bound for the reductions that are achievable with the current state-of-the-art technolo-
gy. Nevertheless, advancements of the 3D printing hardware and the algorithms, e.g., deep genera-
tive models, as well as experience gains by the engineers and an increase of available training data 
for the algorithms are expected to enable further improvements in the future. In addition, generative 
design is becoming more accessible, even for employees with little programming knowledge, since it 
is becoming part of commercially available CAD/CAE platforms [16, 17]. 

“The reason why we were able to reduce the 
weight of a component like the bionic partition 
by 45% is simply because we combined genera-
tive design and 3D printing.” – Bastian Schaefer, 
Innovation Manager, Airbus [14] 

Airbus’ AI-designed cabin partition in the 3D printer (left) and assembled 
(right) [14]. Generative design explored the full design space offered by 3D
printing to find this configuration with minimum weight but equal strength. 

© Autodesk Inc. © Autodesk Inc. 
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Airbus plans to apply its methods to larger structures inside their planes, e.g., the cockpit wall, which 
is twice the size of the partition and needs to be bulletproof, or the structure that houses the galley 
for food and beverage service [14]. The company has the vision of a bionic airliner in 2050 [14]. Fur-
ther steps towards this vision would be to re-design and manufacture small and medium size parts 
such as hinges, brackets, and further interior components [18]. Similar weight reductions can be ex-
pected for these parts. In addition, some of them allow to incorporate the cooling and ventilation 
functions of then-obsolete adjacent components. This is because of the non-solid structures with 
internal cavities or lattices that are achievable with AI-designed 3D printed parts and allow for im-
proved airflow. 

Furthermore, nothing stops engineers from applying genetic algorithms to fuselage or airframe de-
signs. However, the demanding stress requirements for these structural parts most likely drastically 
reduce the achievable material savings. Also, 3D printers that are large enough to manufacture them 
do not exist yet and additive manufacturing techniques that are currently feasible for those parts – 
composite manufacturing with automated tape lying (ATL) / automated fibre placement (AFP) – are 
different and require further adjustments. Additionally, only few large airplanes – namely the Boeing 
787 Dreamliner and the Airbus A350 XWB – are dominantly built using additive manufacturing. A 787 
is made of 50% composites, including fuselage, wings, tails, doors, and interior [19], and a A350 53% 
including wing box, fuselage, and empennage [20]. In consequence, these planes offer more possibili-
ties for weight reduction with designs optimised by generative design. However, changes to structur-
al parts require expensive and time-consuming certification processes. Furthermore, establishing 
production facilities with capacities for much more composite parts will take time and money, too, 
e.g., Boeing invested more than one billion dollars in to its new Composite Wing Center just to re-
place the aluminium wings of the 777 with parts made of composites [21]. Nevertheless, most com-
panies are already planning to substitute more and more components with composite or 3D printed 
parts [22, 20, 23, 21, 24] and AI-driven designs might render this transition commercially viable even 
earlier. 

Artificial Neural Networks as Surrogate Models 
Generative design requires a given objective function and a given set of constraints. This is true for 
any design optimisation technique, even if it is performed manually. Mathematical functions map 
design candidates to properties that characterise, e.g., aerodynamics, loads, flight dynamics, weight, 
structural strength, or producibility [25], which appear as constraints or objectives in the optimisa-
tion problem. While some of these properties can be easily and directly derived from designs, others 
require complex physical models and simulations and some mappings are even unknown or rely on 
heuristics. Because precise physical modelling is time-consuming [26, 25, 27], this slows down or 
even prevents the commercially viable introduction of novel materials, part designs, and manufactur-
ing techniques. Furthermore, it can happen that newly introduced parts and processes that are ex-
pected to be optimal in some sense do not fulfil the expectations because the chosen model, on 
which the optimisation was based, was wrong or at least imprecise due to attempts to limit the 
modelling effort. 

A solution is to derive complex physical models from existing data with machine learning instead of 
attempting to explicitly model them based on expert knowledge [26, 25, 27]. The idea of using neural 
networks as surrogate models is not new and has already been applied to aircraft design more than 
20 years ago [27]. However, the advancements of efficient algorithms that can handle large amounts 
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of data, address complex engineer-
ing problems with many dimensions, 
and quickly run on tailored compu-
ting hardware such as GPUs, espe-
cially deep learning, enable new 
possibilities. 

How it works 
Like any other model class that is used 
in engineering, artificial neural net-
works are functions that map a set of input variables to a set of output variables. Their design is in-
spired by biological neural networks such as brains. Specifically, they consist of layers of nodes called 
neurons, which can be several millions in deep neural networks. All neurons are connected to neu-
rons in adjacent layers. At first, the inputs, i.e., real numbers, are fed into the first layer. Each neuron 
weights them differently and applies a non-linear activation function to the weighted sum. If the sum 
is high, then the neuron’s output is high, if the sum is low, then the neuron’s output is low, too. The 
second layer uses the outputs of the neurons in the first layer as inputs, weights them with different 
weights and calculates activations again. In this way, the inputs are propagated through the whole 
network until the last layer provides the desired outputs. 

This structure is very flexible and allows to approximate almost any mathematical function. The first 
step when using artificial neural networks as surrogate models is to collect training and test data, i.e., 
exemplary inputs and outputs of the physical process that we attempt to model. In the training 
phase, we feed this data into the neural network and the weights of the connections are optimised 
such that the test outputs are best approximated. Subsequently, we can take novel component de-
sign proposals and use the model to predict the outcomes, e.g., lift and drag values [27, 25], noise, 
emissions, and weights [26], or moments of inertia [27]. 

Example 
My own project when I was working as a tool engineering intern with The Boeing Company in 2018 
serves as an example for this section. The company currently replaces the wide-body jet airliner fami-
ly 777 with the next generation – the 777X, – which saves weight and, therefore, fuel with wings 
made of composite material rather than aluminium leading to increased efficiency by 7% alone [28]. 
Boeing produces the composite wing skins with automated tape lying (ATL) [29]. A heated robot 
head sequentially places layers of carbon fibre following pre-defined courses. This a very complex 
physical process. Therefore, it is challenging for engineers to come up with part designs that can be 
easily, quickly, and reliably manufactured [30]. In the initial phase of the use of such an alternative 
production technology, it may happen that the machines run with reduced speed and manual inspec-
tion and rework may be necessary to ensure the quality of the final product. This is because no phys-
ical model exists that can accurately predict the producibility of part designs with ATL. To support the 
timely introduction of novel components like wings, which are crucial for the efficiency gains of a re-
designed airplane, a solution is to develop a neural network as surrogate model that uses the part 
geometry as well as several machine parameters as inputs and calculates producibility scores for 
different areas of the part [31]. These scores can be used by engineers to optimise the design in a 
closed feedback loop [30] and to adjust machine parameters leading to faster production cycles with 

Artificial neural networks provide valuable feedback for engineers about 
the producibility of their part, e.g., a wing skin, allowing for iterative 
design optimisation. 

© Author 
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lower machine down-times while maintain-
ing the high part quality and reducing the 
amount of rejected parts. 

Clearly, this concept is not limited to ATL 
and can be transferred to other manufac-
turing domains. 

A major challenge for the design of an AI 
like this one is how to represent the com-
plex design of a large aircraft component, 
e.g., a wing skin, which is more than 20 m 
long, in a lower-dimensional space that can 
be fed into a neural network. This can be 
partly achieved by parametrisation of the CAD model and partly by treating the surface of the design 
like a camera image that consists of discrete pixels [30, 32, 33]. This allows to apply efficient neural 
network structures that were pioneered for image processing and analysis [32, 33], a domain where 
AI has been very successful. 

Outlook 
The given example shows that artificial neural networks allow to mathematically describe physical 
processes that cannot be modelled with traditional approaches. This can be an important factor to 
ensure that the introduction of novel manufacturing techniques, novel materials, and novel designs 
happens on time and on budget. Both is crucial if we aim to quickly introduce greener parts in the 
next years. 

However, AI plays a secondary role in this regard. The primary goal is to design parts with minimum 
weight. While weight is clearly a physical property of a part, the mapping from the part design to its 
weight is usually a simple function with well-known parameters, e.g., material densities, and does 
not benefit from complex surrogate models. 

Furthermore, neural networks cannot be considered to be a novel technology in aircraft design, 
many different application scenarios have already been identified [26, 25, 27]. Its novel benefits orig-
inate again from the combination with newly introduced manufacturing techniques as well as the 
advent of deep learning. Treating part designs like images and feeding them into tailored deep neural 
networks allows to handle complex high-dimensional problems that cannot be addressed with tradi-
tional neural networks. 

Reinforcement Learning 
Reinforcement learning is an optimisation technique whose structure is close to that of traditional 
human-driven design processes [15]. In addition, deep reinforcement learning, i.e., reinforcement 
learning combined with deep neural networks, is currently one of the hottest topics in AI research 
and let to famous breakthroughs such as the development of Google’s AlphaGo in the past decade 
[34, 35]. However, industry has not adopted the technology on a broad scale yet. 

Heated ATL head laying down a wing skin in Boeing's Composite 
Wing Center [29]. Predicting the part quality and the likelihood of 
defects that result from a certain pair of part design and machine 
parameters is a challenge, which is successfully addressed with 
artificial neural networks. 

© Mike Siegel / The Seattle Times 
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How it works 
Again, optimisation with reinforcement learning requires a con-
straint search space and an objective or reward function that 
shall be maximised. Unlike genetic algorithms, reinforcement 
learning starts with a single feasible instance (a state) and 
probes the space around by evaluating the reward function for 
close instances. Over time, the algorithm can deviate further 
from the initial solution to explore unseen parts of the search 
space. However, the goal of reinforcement learning is not to find 
an optimal solution for a single given set of constraints. Instead, 
it learns a policy how to change the initial state towards a better 
solution, which generalises to different search spaces. 

In product design, reinforcement learning is employed to adapt design configurations to different but 
similar requirements [36]. E.g., reinforcement learning can transfer a successful design for one part 
to other parts with similar requirements. Just as in a board game where a good strategy can counter 

playing behaviours of opponents that you have not met before. 

Examples 
To the best of my knowledge, the aerospace industry has not 
adopted reinforcement learning for product design yet. However, 
researchers have shown that reinforcement learning can be suc-
cessfully employed to optimise an aerofoil angle of attack [36]. 
Especially, they have used deep reinforcement learning to handle 
the high-dimensional input data. The algorithm learns design poli-
cies that generalise well for different aerofoil shapes. 

Furthermore, reinforcement learning has been used to automate 
the tuning of a sub-component of a rocket engine [37]. The proto-
typed algorithm is assumed to save “thousands of dollars” and up 
to three months of testing. 

Outlook 
The ability of reinforcement learning to adjust existing solutions to different requirements can help 
to accelerate the design of greener aircraft components. As soon as weight-saving solutions for some 
parts are found, they can be transferred to similar ones with only little additional effort. Due to the 
huge number of parts of a modern jetliner, this procedure has the potential to save considerable 
development time. However, the high-dimensional input space of designs such as Airbus’ cabin parti-
tion are still a challenge for state-of-the-
art reinforcement – and even deep rein-
forcement – learning algorithms. Further 
research in this direction is required and 
also on more sample-efficient methods, 
i.e., algorithms that need less training 
data. 

Simulation of an aerofoil angle of 
attack optimised with reinforcement 
learning [36]. Reinforcement learning 
stands out due to its ability to general-
ise, i.e., to adapt configurations to 
different requirements. 

© Springer Nature Switzerland AG 

Reinforcement Learning (RL) comes up 
with policies that transfer designs to 
different requirements. 

“Our solution could save thousands of dollars 
and cut up to three months of manual testing on 
expensive testing equipment.” – Edward Mehr, 
Data Product Management Fellow, Insight [37] 

© Author 
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Conclusions 
The impact of AI on greener aircraft designs will significantly depend on the chosen application area. 
It has been demonstrated that state-of-the-art generative design can lead to weight reductions of up 
to 45% for certain parts, but the gains for others with tighter design requirements might be much 
smaller. A key component to unleash the power of AI-driven design processes is an increase of addi-
tive manufacturing capacities. However, all major companies are already investing into this field and 
AI-driven process optimisation will help to make these investments commercially viable earlier. 

An additional bottleneck is the high complexity of aircraft designs. If research makes progress with 
developing algorithms that can quickly work with many dimensions, then generative design and rein-
forcement learning cannot only be employed to make individual components of current aircraft 
greener, but also for major contributions to the design of the next generation, which will most likely 
contain significantly more and larger bionic 
parts than ever before. This will help to 
decrease the carbon footprint of global air 
traffic while ensuring that boarding a plane 
does not become a luxury. 

Furthermore, AI-driven design is not limited to commercial aircraft. Replacing parts of fighter aircraft 
with alternatives that are lighter but equally strong might even be achievable in a shorter time hori-
zon due to their usually smaller size requiring smaller investments into production process changes. 

Finally, the use of AI is not only reasonable from an environmental standpoint, but also from an eco-
nomic perspective. With fuel expenses contributing to airlines’ operating costs with 23.7% [3], lighter 
aircraft will help them to save money and invest into renewals of their fleets – each kilogram of 
weight reduced on an aircraft can roughly save 3000 $ worth of fuel [18]. Furthermore, other indus-
tries have demonstrated that AI has a short time to market and (deep) neural networks, generative 
design, and reinforcement learning are already part of common engineering software. This lowers 
the amount of needed skill training as well as the time spend in development cycles. In general, AI is 
a digital technology, which requires very low investments in comparison to production equipment 
that is used to build aircraft. In consequence, it is a perfect companion for novel manufacturing tech-
niques and knowledge-based aircraft re-design, which will altogether make the future of air travel 
greener. 

© Author 

“AI automates learning, which is the core of 
innovation.” – Roberto Verganti et al. [15] 
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